Development and Testing of a Cardiac Construct for the Treatment of HF

Jordan Lancaster

Sarver Heart Center - The University of Arizona

Southern Arizona VA Medical Center
Background – Heart Failure

- 500,000 new cases annually
- Largest expenditure for Medicare
- Best current HF treatments focus on preventing deterioration in left ventricular (LV) function
Normal vs. Infarcted Heart. The left ventricle has a thick muscular wall, shown (A). After a myocardial infarction, heart muscle cells in the left ventricle are deprived of oxygen and die (B), eventually causing the ventricular wall to become thinner and the LV to dilate (C).

© 2007 Terese Winslow
Clinical Trials - Disappointing

Barriers to myocardial regeneration

- Rapid cell wash out
- Fibrotic tissue
- Lack of blood flow
- Low number of cells
The Idea

• Proposing a new/different approach to cell-based therapy

• Tissue engineered, patch/scaffold delivery methods
Fibroblast Patch

- Bio-absorbable Vicryl mesh overgrown with newborn human dermal fibroblasts
- Metabolically active - secretes collagen & fibronectin
- Fibroblasts produce angiogenic growth factors
 - VEGF, HGF, bFGF, and angiopoietin-1

Lancaster et al. *Tissue Engineering* 2010
Fibroblast Patch

Chronic MI model

- Does not reverse maladaptive LV remodeling
- Does not increase contractility
- Promotes angiogenesis
- Increases myocardial blood flow

Lancaster et al. *Tissue Engineering* 2010
Hypothesis

• Fibroblast patch can be seeded and co-cultured with cardiomyocytes

• Implantation of a biologically active cardiomyocyte patch will improve left ventricular function in a CHF model
Cardiomyocyte – Fibroblast Patch
Spontaneous Contractions
Cardiomyocyte – Fibroblast Patch
Electrical Stimulation
Cardiomyocyte – Fibroblast Patch
Gap Junction Mediated Dye Transfer
MEA Electrical Mapping

Lancaster et al. Circulation Heart Failure 2012 - Submitted
MEA Electrical Mapping

Consistent beat-to-beat sequence activation occurring at 78bpm
Chronic Heart Failure Model

- Left coronary ligation
- Patch placement
- Baseline Echo
- 3wk Echo <35%
- 6wk Echo
- 10wk Echo
- 18wk Echo + Hemodynamics
Improvement in LVEF at 18wks

Data are mean±SE. α and β denote statistical significance (p<0.05) CHF vs. NCM+3DFC and Sham vs. CHF respectively. CHF = chronic heart failure, NCM = neonatal cardiomyocytes, 3DFC = 3 dimensional fibroblast construct. Sham, N=8; CHF, N= 2-20; NCM-3DFC, N=3-26.

Lancaster et al. Circulation Heart Failure 2012 - Submitted
Table 1. Three week endpoint hemodynamics for rats treated with NCM-3DFC

<table>
<thead>
<tr>
<th></th>
<th>MAP</th>
<th>SYS</th>
<th>EDP</th>
<th>CI</th>
<th>dP/dt (+)</th>
<th>dP/dt (-)</th>
<th>Tau</th>
<th>PDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham</td>
<td>129±4</td>
<td>128±4</td>
<td>5±1</td>
<td>0.52±0.04</td>
<td>7146±285</td>
<td>6368±468</td>
<td>15±1</td>
<td>171±5</td>
</tr>
<tr>
<td>CHF</td>
<td>103±4β</td>
<td>124±5</td>
<td>27±2β</td>
<td>0.45±0.05β</td>
<td>4651±250β</td>
<td>2853±148β</td>
<td>25±1β</td>
<td>112±8β</td>
</tr>
<tr>
<td>NCM+3DFC</td>
<td>100±5</td>
<td>126±4</td>
<td>15±3α</td>
<td>0.61±0.06α</td>
<td>5806±192α</td>
<td>3517±230α</td>
<td>21±1α</td>
<td>146±5α</td>
</tr>
</tbody>
</table>

Table 2. Eighteen week endpoint hemodynamics for rats treated with NCM-3DFC

<table>
<thead>
<tr>
<th></th>
<th>MAP</th>
<th>SYS</th>
<th>EDP</th>
<th>CI</th>
<th>dP/dt (+)</th>
<th>dP/dt (-)</th>
<th>Tau</th>
<th>PDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham</td>
<td>119±2</td>
<td>119±2</td>
<td>8±1</td>
<td>0.35±0.03</td>
<td>7355±400</td>
<td>6103±287</td>
<td>16±1</td>
<td>178±6</td>
</tr>
<tr>
<td>CHF</td>
<td>84±2β</td>
<td>105±7β</td>
<td>28±3β</td>
<td>0.32±0.03</td>
<td>4048±217β</td>
<td>2172±130β</td>
<td>29±1β</td>
<td>98±9β</td>
</tr>
<tr>
<td>NCM+3DFC</td>
<td>101±3α</td>
<td>111±6</td>
<td>17±7</td>
<td>0.33±0.06</td>
<td>4713±118α</td>
<td>2915±219α</td>
<td>25±2</td>
<td>137±5α</td>
</tr>
</tbody>
</table>

Data are mean ± SE. α, p<0.05 CHF vs. NCM+3DFC and β, p<0.05 Sham vs. CHF. At three wks Sham, N = 7-20; CHF, N = 6-12; NCM-3DFC, N = 7-13. At eighteen wks Sham, N= 8; CHF, N=3-6, NCM+3DFC, N=2-3.
Tissue Characterization at 3 & 18 wks post implantation

Trichromed LV cross sections 3 and 18 weeks after implantation

Lancaster et al. *Circulation Heart Failure* 2012 - Submitted
Inducible Pluripotent Stem Cells (iPSCs)

- IPS cells are uniquely useful stem cells
 - Derived from adult tissue via non-invasive methods
 - Can be expanded indefinitely
 - Can be differentiated into any cell type in the body
 - Fully pluripotent
- IPS cells offer distinct advantages to ES cells
 - Can be created via streamlined & non-invasive methods
 - Eliminates political/social issues regarding tissue source
 - Enables diversity of genotype and phenotype

Draw 1 small sample from 1 person → Reprogram sample tissue into IPS cells → IPS cells multiply and expand in culture indefinitely → Differentiate IPS cells into any cell type in the body (unlimited numbers)
iPSCs - 4 days in Culture

iPSC derived cardiomyocyte patch demonstrates spontaneous and synchronized contractions after 4 days in culture.

Lancaster et al. Unpublished data
Functional Improvements?

• Currently implanting iCELL patches in Rats with CHF
 – Varying seeding densities
 – Functional Benefits? Echo & Hemodynamics
 – Cell Survival (RFP)
Conclusion

- Demonstrated cardiac patches can be made
- Beats spontaneously and synchronously
- Respond to electrical stimulation
- Displays function gap junctions
- Electrically stable
- Improves cardiac function in rats with CHF
- BUT... at this point a proof of concept, must use clinically relevant cell type(s)
- Reproducible tissue culture techniques with iPSC derived cardiomyocytes
Financial Support

- VA Merit Review
- AZ Biomedical Research Commission
- WARMER Research Foundation
- Hansjörg Wyss Foundation
- Sarver Heart Center
 - Shaftner Memorial Award 2011
Acknowledgements

University of Arizona
Steven Goldman
Elizabeth Juneman
Joe Bahl
Sergio Thal
Maribeth Stansifer
Grace Gorman
Nicholle Lahood
Melissa Denn

Russell Witte
Yexian Qin

Jan Burt
Jose Ek Vitorin

Salk Institute
Juan Carlos Izpisua Belmonte
Ignacio Sancho-Martinez

Cellular Dynamics International
Carter Cliff
Steve Fiene
Blake Anson

Northern Arizona University
Robert Kellar
Questions?

Spontaneous Contractions
Pacing
Functional Gap Junctions
MEA – Electrical Mapping
Ejection Fraction
Hemodynamics
Tissue Characterization
iPSCs
iPSCs – Force Generation

Lancaster et al. Unpublished data
Future Work

• Live cell tracking
• Ion channel expression
• Gene expression - Connexin-43, Akt, Pim-1, ILK, SDF-1, and CXCR4
• Larger animal model
Mechanism of Action

- Cellular replacement (cardiomyocytes)
 - Survival
 - Maturation
 - Integration
- Cytokine activation
- Stimulation of intrinsic cardiomyocyte population
Ideal Cardiac Construct

• Contractile
• Electrophysiologically stable
• Mechanically robust yet flexible
• Vascularized or at least quickly vascularized after implantation
• Non-immunogenic
 – Cells
 – Degradation (cytotoxic)

Leor et al. 2005
Challenges of Myocardial Tissue Engineering

- Polymer scaffolds exhibit host inflammatory response
- Scaffold degradation products release potential toxic substances
- Scaffolds compliance is different than myocardial tissue
- Cardiomyocytes remain isolated; tissue does not beat as syncytium

Cardiomyocyte seeded dermal fibroblast patch does NOT face these challenges.
Cytokine, chemokine, and growth factor stimulation in kinetic versus static strain (10% 1Hz) of the 3DFC in vitro involved in angiogenesis.

3DFC + NCM
3DFC + additional fibroblasts
3DFC + conditioned media
3DFC + NCM on non-infarcted RV
Salk iPS-derived Cardiomyocytes on Fibroblast Patch *in vitro*
iPSCs: Salk Institute

One day after seeding, spontaneous contractions were seen

Dr. Juan Carlos Izpisua Belmont, Salk Institute, La Jolla, CA
CDI iPS-derived Cardiomyocytes
Fibroblast Patch

Acute MI model
- Improves myocardial blood flow
- Improves LV function
- Reverses maladaptive remodeling

Chronic MI model
- Increases myocardial blood flow
- Promotes angiogenesis
- Does not reverse maladaptive LV remodeling
- Does not increase contractility

Cell-to-Cell Communication & Mechanical-Electrical Coupling

Understanding the electrical activity of a scaffold *in vitro* may predict the utility of cell-based therapy in HF.
Cell-to-Cell Communication & Mechanical-Electrical Coupling

Spontaneous Contractions

Transverse conduction voltage of 776±6 μV
Shortest latency occurring on E7

Consistent beat-to-beat sequence activation
Cell-to-Cell Communication & Mechanical-Electrical Coupling

Normothermic (37+2°C)
Hypothermic (27+5°C)

in vitro mechanical-electrical response to environment
The *Ideal* Myocardial Engineered Tissue

1. Structural support
2. Increase myocardial blood flow
3. Force development
4. Excitability

Proof of concept ➔ Second generation patch with clinical utility
Cardiomyocyte – Fibroblast Patch
3 Week Functional Data

Ejection Fraction

Cardiac Index

Data are mean + SE. SO, n=21; UN, n=12; 3DFC, n=9; NCM-3DFC, N=9. CHF = chronic heart failure, NCM = neonatal cardiomyocytes, 3DFC = 3 dimensional fibroblast construct. * p<0.05 vs. SO, @ p<0.05 vs UN, # p<0.05 vs 3DFC
Cardiomyocyte – Fibroblast Patch
3 Week Functional Data

Data are mean ± SE. ; SO = Sham Operated; UN = Untreated;
3DFC = 3-Dimensional Fibroblast Construct; NCM-3DFC = Neonatal Cardiomyocyte 3DFC.
SO, n=19; UN, n=12; 3DFC, n=9; NCM-3DFC, n=9.
* P<0.05 vs SO; @ P<0.05 vs UN; # P<0.05 vs 3DFC.
Clinical Trials of Cardiac Stem Cell Therapy

ALCADIA = AutoLogous human CArdiac-Derived stem cells to treat Ischemic cArdiomyopathy.
CADUCEUS = CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction.
SCIPIO = cardiac Stem Cell Infusion in Patients with Ischemic cardiomyopathy.

Conclusions

• Successful tissue engineered scaffold requires:
 – Anisotropic structure and function
 – Force development
 – Excitability

• NCM patch is “proof of concept”
Conclusions

• Second generation patch with clinical utility

• Patch may provide biological substitutes:
 – *in vitro* and *in vivo* application
 – Disease modeling
 – Drug development
 – Therapeutic tissue reconstruction